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Abstract 

Imaging genetics and genomics research has begun to provide insight into the molecular and 

genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk 

for psychopathology may emerge. As it approaches its third decade, imaging genetics is 

confronted by many challenges including the proliferation of studies using small sample sizes 

and diverse designs, limited replication, problems with harmonization of neural phenotypes for 

meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than 

originally posited, with increasing evidence of polygenicity. These concerns have encouraged the 

field to grow in many new directions including the development of consortia and large scale data 

collection projects as well as the use of novel methods (e.g., polygenic approaches, machine 

learning), which enhance the quality of imaging genetic studies, but also introduce new 

challenges. Here, we critically review progress in imaging genetics and offer suggestions and 

highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and 

genomics lies in its translational and integrative potential with other research approaches (e.g., 

non-human animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-

based pathways that give rise to the vast individual differences in behavior as well as risk for 

psychopathology.  
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By linking genetic and epigenetic variation to brain structure, function, connectivity, and 

chemistry via neuroimaging measures (1), imaging genetics and genomics can inform the neural 

mechanisms through which genetic and molecular differences impact cognition, emotion, and 

behavior in health and disease. Since being pioneered nearly 20 years ago by candidate gene 

studies of receptor ligand binding (2-6); Supplemental Material), imaging genetics has 

incorporated a host of allied neuroimaging techniques, most frequently, structural and functional 

magnetic resonance imaging (sMRI, fMRI) and has been integrated with traditional psychiatric 

genetics (7-9) and non-human animal models (10-13). More recently, this approach has been 

extended to epigenetics (14,15), and, as imaging genomics, to discovery-based (16,17) and 

polygenic (18,19) approaches.  

Accompanying an exponential increase in publications, imaging genetics and genomics 

has also been confronted by several qualitative concerns including the proliferation of studies 

with small sample sizes, limited replication, unclear mechanisms relating genes to brain and 

brain to behavior, and evidence that effect sizes may be smaller than originally thought, and 

perhaps no larger than effects for traditional psychiatric diagnoses (9,20). Such concerns, and the 

desire to find new genes and pathways via genomic approaches, have led to the formation of 

consortia and large-scale projects to increase sample size (21-26) as well as the adoption of 

methodological and technological innovations in genetics (e.g., GWAS, epigenetics), 

neuroimaging (e.g., multimodal PET/fMRI), and psychiatric genomics (e.g., polygenic risk 

scores, LD score regression) (9,14,18,27-30), all of which enhance the quality of imaging genetic 

studies, and each of which is also subject to new potential pitfalls. 

Here, we critically review the current state of imaging genetics and genomics 

highlighting unique strengths, considerations, and limitations of distinct approaches while 
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considering their utility for psychiatry going forward. We suggest that some criteria to evaluate 

the usefulness of intermediate phenotypes according to an endophenotype conceptualization are 

retrograde and counterproductive when applied to imaging genetics in some instances. We argue 

that single variant analyses remain informative in the context of a polygenic architecture that 

underlies the majority of imaging phenotypes. Further, we discuss the lack of replication in 

imaging genetics and what has been learned, and not learned, from meta-analytic efforts. Next, 

we review the use of candidate and discovery-based polygenic methods that aim to better 

characterize the complex polygenic architecture of imaging phenotypes and consider pitfalls that 

these techniques may face and how they may be minimized. We highlight the potential of 

molecular genomic methods to verify and mechanize relationships between the dynamic genome 

and neural phenotypes. Finally, we consider how imaging genetics and genomics hold their 

greatest potential not in isolation, but as methods that can be used alongside other techniques 

(e.g., pharmacologic challenge), levels of analysis (e.g., the transcriptome, psychiatric genetics), 

and non-human animal research (e.g., genetic models) in the search for mechanistic consilience 

(Table 1). As imaging genetics and genomics further integrate with molecular genetics, basic 

neuroscience, and psychiatric genetics, and begins to accumulate not only large but also 

longitudinal samples, it will be able to more adequately model and test the complex interplay 

between genes, the brain, body, environment, and behavior and expand these pathways (Figure 

1). It is hoped that such mechanistic characterization will ultimately improve the nosology, 

treatment, and prevention of mental illness. 
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Is the Endophenotype Conceptualization of Intermediate Phenotypes Useful? 

Theoretically, intermediate phenotypes, such as imaging phenotypes, lie along a mechanistic 

pathway through which genetic variation and/or environmental experiences contribute to clinical 

phenotypes (Figure 1A)(31). Here, we refer to the traditional pathway from the static genome to 

neural intermediate phenotypes and behavior, although modern genetics regularly challenges 

such unidirectionality (Figure 1B). Within the theoretical discussion of intermediate phenotypes, 

the greatest attention has often focused on the endophenotype conceptualization, which stipulates 

that endophenotypes are associated with psychiatric disease and heritable, among other 

considerations (32). 

The requirement of disease-association presupposes the research value of psychiatric 

nosology. This is problematic because many, if not all, psychiatric diagnoses are heterogeneous 

amalgamations of symptoms, with the same diagnosis having distinct putative etiologies, as is 

becoming more clear following RDoC (33,34). Such diagnostic heterogeneity may dilute, and 

even obliterate intermediate phenotype–disease association. For example, although anhedonia is 

a cardinal symptom of depression, it is not amongst the most common symptoms (35). As such, 

anhedonia-related neural circuitry may not be identified or minimized in a general patient/control 

study (36,37). Indeed, some reports have associated depression with blunted reward-related 

activity in the ventral striatum (38,39), while others have not (40). Or consider that despite the 

polygenic nature of psychosis (41), some patients presenting with psychosis have a genetic 

variation in Huntingtin(42), or velocardiofacial syndrome(43). Thus, it is possible that distinct 

etiologies associated with unique presentations could be lost or minimized by a reliance on 

diagnosis (44). The positive results of a recent GWAS study on melancholic depression, a more 

severe and homogenous form of the disorder further reinforce this concern (33),but see(45). This 
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is not to imply that understanding variability in disease associated intermediate phenotypes is not 

important, but rather that constraining imaging genetics research to intermediate phenotypes or 

genes previously linked to a disorder may stifle research on etiologic brain-based associations by 

generating an intellectual file drawer problem where only hypotheses satisfying endophenotype-

disease correspondence are evaluated impeding the development of etiologically-based 

classification. 

Heritability is on a scientific basis a more logical endophenotype criterion. Twin studies 

have largely focused on the heritability of morphological measures, which approach the upper 

end of psychiatric estimates, ranging from 60-80% (46,47). The few studies of brain function 

suggest more modest estimates (~40%)(46). However, intermediate phenotypes that are not 

heritable can still have genetic origins and mediate relationships between genes and behavior. 

For example, Williams Syndrome, which is characterized by a host of physical and personality 

characteristics, including excessive sociality is attributable to a microdeletion that typically 

occurs during the formation of germline cells in people with no history of the disorder (48,49). 

Common variation within the genes (e.g., GTF2I) spanning the microdeletion region have 

become candidates that are informing phenotypes related to sociability (22,50). Intermediate 

phenotypes can also represent stable trait differences that while not entirely heritable per se, are 

dependent upon experience arising as the product gene by environment interactions (e.g., FKBP5 

(20,51,52); Supplemental Material). Additionally, within genetic studies, non-heritable 

intermediate phenotypes may characterize individuals who are part of distinct, non-genetic 

subgroups, and who would otherwise be indistinguishable diagnostic phenocopies; such insight 

may contribute to subgroup classification, and diagnostic refinement. Finally, heritability refers 

to loci shared identical-by-descent representing the static genome. However, genes may traverse 
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an imaging phenotype on their pathway to behavior, even when the intermediate phenotype is 

not heritable. For example, a new wave of epigenetic research (14,53-55), examining markers 

among discordant monozygotic twins is poised to take advantage of non-heritable intermediate 

phenotypes. The validity of a result that would depend on the phenotype being highly heritable 

(e.g., polygenic risk) would be suspect if the phenotype was not. However, the widespread 

application of this criterion could unintentionally impede important etiologic insight generated 

from genomic research on non-heritable neural phenotypes.  

 

Single Variant Approaches 

The majority of imaging genetics research has been conducted within a candidate gene 

framework. Most studies have focused on a limited number of functionally characterized 

polymorphisms (e.g., COMT rs4680(56), SLC6A4 5-HTTLPR(57) within genes coding for 

products that influence particular neural systems. Most of these variants have been inconsistently 

associated with neural phenotypes and psychopathology with both positive and null associations 

reported (58-61). Recently, the unprecedented success of genomewide association studies 

(GWAS) has identified new candidate genes (e.g., KTN1(16)) and corroborated the role of prior 

suspects (e.g., SIRT1(33,62,63)). Polymorphisms discovered in psychiatric GWAS are now being 

investigated within a candidate framework with promising results emerging (64-66), though 

other evidence suggests limited overlap between polymorphisms associated with clinical and 

neural phenotypes (9,67).  
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The Controversy of Candidate Associations 

As in psychiatric genetics(60,61), the intuitive mechanistic and interpretable appeal of candidate 

imaging genetics findings have led to many replication and extension studies, and as many 

contradictory findings. Several meta-analyses have concluded that effect sizes are likely smaller 

than originally reported, may represent false positive associations, and that publication bias may 

promote false confidence in the robustness and biological importance of these effects (58,68,69). 

However, the utility of meta-analysis for some imaging phenotypes is questionable. 

Meta-analysis tends to work best under two conditions. First, when constructs are 

measured in a standard fashion (e.g., obesity and type 2 diabetes (70), they estimate effects with 

great precision. Second, study design differences across studies can be modeled with a large 

number of studies using each design, allowing meta-analyses to examine whether design 

differences influence associations. Within neuroimaging, the Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA) consortium has successfully harmonized imaging data across 

studies to meta-analyze structural phenotypes in a GWAS context(16). However, because many 

imaging genetics studies, such as those probing task-related activity, do not use standardized 

methodology (e.g., task and analysis), they present unique challenges. 

Methodological differences across neuroimaging studies can meaningfully impact the 

nature of measured neural phenotypes. For instance, consider the literature on amygdala 

reactivity to emotional faces in autism. Early studies produced evidence of hypoactivation 

(71,72). However, eye tracking research has shown that children with autism typically avoid eye 

contact (73), which conveys important emotional information and robustly recruits amygdala 

activation(74). Studies directing or measuring participant eye gaze have shown elevated 

amygdala reactivity in autism that is correlated with eye gaze duration (75-77). A meta-analysis 
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not considering such design differences, may produce data that autism is not associated with 

amygdala function (78). This is not to suggest that studies of non-imaging phenotypes are 

impervious to these challenges (e.g., self-report versus measured weight) or that such differences 

are responsible for inconsistent findings, but merely, that harmonization challenges are 

heightened among meta-analyses of some imaging phenotypes.  

Meta-analyses have attempted to model differences across studies. For example, in a 

meta-analysis of the relationship between 5-HTTLPR genotype and amygdala function, Murphy 

and colleagues (68) examined whether a host of study characteristics influence the association. 

However, the small number of studies using each design and variability within study groupings 

may have left this approach unable to adequately model differences. For example, studies were 

coded according to ethnicity and studies of German (79) and Korean participants (80), where 

grouped together as “not European/Mixed.” Such heterogenous representations of study 

variability are inadequately powered and conceptualized leaving the conclusions of marginally 

significant small effects, debatable. What remains unequivocal is that data are inconclusive; 

whether positive or null associations better represent reality can only be addressed by further 

research. Overall, meta-analytic approaches have provided road maps for challenges associated 

with candidate studies (60,81) and identified loci conferring small effects for psychiatric and 

structural neuroimaging phenotypes (16,82). However, the utility of meta-analyses incorporating 

studies using diverse methodology when study related differences cannot be systemically 

evaluated, is questionable.  

Much like data on complement component 4 and schizophrenia (83), some imaging 

genetics phenotypes may presently be better informed by convergence across modes of 

investigation (e.g., Table 1). For instance, the significance of 5-HTTLPR findings may be 
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weighed alongside observations in non-human animal models, and effects of the 5-HTTLPR 

polymorphism on serotonin transporter expression (84). For example, work using tissue oxygen 

amperometry (which measures hemodynamic responses equivalent to BOLD fMRI in freely 

moving rodents;(85), has shown that serotonin transporter overexpression reduces amygdala 

responses to aversive cues in mice; a finding remarkably convergent with significant results 

reported in the human 5-HTTLPR BOLD fMRI amygdala literature (86,87).  

 

Genomewide Association Study Approaches 

Much like initial psychiatric GWAS, the first imaging GWAS did not identify any genomewide 

significant polymorphisms, likely due to inadequate power (17). While other early imaging 

GWAS have observed genomewide significant results these were not replicated (88). Arguably, 

within imaging, GWAS did not become particularly informative until the development of large 

consortia such as ENIGMA (21), through which investigators have pooled effect size estimates 

to achieve samples large enough to reliably detect loci of small effect (9,16). For example, two 

GWAS have linked rs7294919 genotype to hippocampal volume (89,90), with subsequent 

candidate replication (91). 

In addition to identifying new polymorphisms, GWAS data invite speculation regarding 

prior assumptions. Indeed, recent evidence suggests that genetic associations for schizophrenia 

and subcortical brain volume are similarly small in size and non-overlapping (9). If data 

accumulate showing that neuroimaging measures are not associated with larger effects than 

clinical diagnoses, it will be important to consider factors that may contribute to this. For 

instance, despite being etiologically and descriptively heterogenous, clinical diagnoses have been 
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well studied psychometrically and have acceptable to excellent reliability, with notable 

exceptions (depression, generalized anxiety(92). However, other than structural neural 

phenotypes, which have evidence of robust reliability (93,94), the reliability of many 

neuroimaging phenotypes has not been rigorously investigated with inconsistent effects reported 

and conclusions unclear (95-99).  

The success of meta-analytic psychiatric GWAS (41) has led to suggestions that GWAS 

may best inform psychiatry by using large samples with relatively easily assayed phenotypes 

(100,101). As a consequence, imaging genetics would be most useful to understand the neural 

mechanisms underlying these associations. Clearly, this approach has utility, as multiple studies 

are beginning to demonstrate (66). However, much like the endophenotypic conceptualization, 

this approach presumes the value of our current conceptualization of mental illness, and further, 

assumes that loci linked to a particular disorder would also be linked to related neural 

phenotypes. However, unlike data suggesting that depression, subjective well-being, and 

neuroticism share substantive overlap in associated genetic variation (102), there is no overlap 

between genetic variation contributing to indices of subcortical brain volume and schizophrenia 

(9).  Broadly, these results suggest that psychiatric and intermediate phenotype GWAS may 

provide different information that may ultimately lead to refined conceptions of mental illness 

decades in the future. Immediately, these data suggest that subcortical volume abnormalities 

observed in schizophrenia may instead arise from rare mutations (e.g., de novo), schizophrenia 

itself (103), its treatment (104,105), associated risk factors and potential GxE(106). By probing 

overlap across clinical phenotypes with neural outcomes, imaging genetics may usefully inform 

the origins of individual differences among psychiatrically-relevant neural phenotypes (e.g., 

subcortical volume schizophrenia). As larger samples accumulate (Ns>3000), techniques such as 
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LD score regression (107) may be used to estimate genetic correlations across neural and 

behavioral phenotypes. Imaging genomics may identify novel loci that do or do not map onto 

diagnostic categories, but may nonetheless contribute to our understanding of psychiatric 

conditions and potentially lead to refined nosology and treatment in the future. 

 

Polygenic Approaches 

With the exception of ligand-based neuroimaging techniques that target specific receptors, in 

vivo neuroimaging data provide assays of higher-order neural circuit function and structure 

reflective of thousands of interacting neurons and glia. As such, this resolution may be 

incongruous with the action of single genetic variants (20) leading imaging genetics and 

genomics to adopt polygenic techniques to quantify aggregate influence.  

 

Polygenic Scores 

Polygenic scoring approaches fall broadly within two categories: polygenic risk scores (PRS), 

and biologically-informed multilocus profile scores (BIMPS) (20). The PRS approach summates 

“risk” alleles or weighted effects based upon prior GWAS summary statistics (108) and can 

identify neural mechanisms correlated with genetic risk for psychopathology. For example, 

depression PRS are associated with reduced ventromedial prefrontal cortex thickness, which is, 

associated with negative affect(18). For PRS studies to be maximally informative, particularly 

for phenotypes common in non-ascertained samples, it is important to evaluate whether 

associations remain after taking into account phenotypic expressions of the disease. Ideally, such 

relationships could be tested longitudinally to examine whether PRS-based associations with 
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neural phenotypes precede and predict psychopathology. Notably, the PRS approach allows 

genomic liability to psychopathology to be evaluated among individuals without disorder 

expression thereby avoiding confounds of medication and disease process which plague the 

etiologic insight of psychiatric case-control studies (109). Further, unlike other approaches that 

estimate bivariate genetic correlations (e.g., LD score) PRS allow for the degree of polygenecity 

to be examined and are more amenable to smaller samples, as long as the discovery cohort is 

sufficiently powered. Lastly, the application of Bayesian analytic approaches may have utility for 

imaging genetics in this context as they have improved observed effect sizes in a psychiatric 

phenotypes(110).  

There are several limitations to the PRS approach however. It assumes additivity alone 

(which is supported(111)) and neglects potential epistatic effects, which while observed in 

imaging genetics studies (112,113) have yet to be widely replicated (114). Also, by aggregating 

across the genome, when used in isolation, PRS provide no insight into potential underlying 

molecular mechanisms. Further, this approach is constrained by the phenotypes used in the 

discovery-based sample, which may introduce heterogeneity (34,92) or be unrelated to the neural 

phenotypes under study (9). It is plausible that PRS are composed of heterogeneous gene sets 

contributing to distinct aspects of psychiatric diagnoses, wherein brain relationships are not 

observed within the full set but potentially a subset. Moreover, the predictive utility of PRS are 

largely based upon the sample size of discovery datasets, which arguably are just beginning to be 

achieved (115). Lastly, while recent developments in CRISPR/Cas techniques have facilitated 

multiplex genomic editing (116,117) that may eventually approximate polygenic risk, PRS 

approaches are not currently amenable to direct translational work in non-human animals. 
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The BIMPS approach summates functionally characterized polymorphisms across a 

given neural system to derive a composite of relative signaling within that pathway. For 

example, Nikolova and colleagues (28), found that BIMPS reflective of genetically-conferred 

elevations in dopamine signaling are predictive of elevated reward-related ventral striatum 

activity. Arguably, BIMPS approaches compound concerns regarding higher false discovery 

rates for candidate genetic association studies because they rely on priors for the genes (and loci 

in those genes) that constitute the system, assume how individual variants collectively contribute 

to overall signaling, posit that the action across these loci is additive, and provide multiple 

plausible profiles to be developed. For example, in light of opposing relationships between 

prefrontal and subcortical dopamine signaling (118,119), a dopamine BIMPS could reasonably 

be developed that reverse codes predominantly cortical-based genetic influence (120) as opposed 

to tonic dopamine regardless of region (28).  As a result, it will be critical for future research to 

attempt replication defined as the same BIMPS and phenotype.  

Notably, the integration of PRS and BIMPS may prove particularly efficacious. For 

example, imaging genetics could use GWAS-based results from psychiatric genetics to prioritize 

variants within a given system or systems. Using this framework, a recent study discovered 

common genetic moderators of the transcriptome response to stress hormone activation, that 

were also associated with depression (8). A PRS/BIMPS polygenic profile of variants associated 

with both stress hormone transcriptome response and depression was associated with 

overgeneralized amygdala responsiveness, providing a putative neural mechanism through which 

the transcriptome response to stress may influence depression risk (8). 
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System and Pathway-Level Analyses  

Multiple methods have been developed to explore genetic variation at a system or pathway level, 

in either an a priori or exploratory fashion. When evidence suggests that a particular protein or 

connected system contributes to a neural phenotype, yet SNP-based priors are unavailable or 

limited, candidate gene-level and systems-level analytic approaches may be employed, as has 

been more commonly done within psychiatry (7,121), but are beginning to be implemented in the 

context of imaging genetics (27). Clearly such approaches require adequate correction for the 

multiple exploratory tests conducted within and across sets to reduce Type 1 error rates; 

permutation-based procedures that keep genetic architecture intact while shuffling an intact 

phenotypic structure are particularly suited for this. Notably, how genetic variation within a 

gene/system-set is aggregated is controversial, with averaging being the most common (7). 

Nonetheless, results emerging from such analysis may prioritize particular sets and 

polymorphisms for further research interrogating potential function.   

Using a more agnostic approach, GWAS data may also be mined to identify enrichment 

in known systems (122). For example, by using a full-genome pathway analysis (i.e., reducing 

909,622 SNPs to 1,658 pathway), calcium responsive pathways were linked to neural activation 

to a face matching task in the absence of a genomewide significant locus (123). One benefit of 

pathway enrichment analyses is that it distills genomic data into genetic data representative of 

defined neural systems leading to data that may be more mechanistically interpretable and allow 

for greater translation with non-human animal models and pharmacologic challenge studies that 

can precisely target these systems. A unique concern of this approach is that it is restricted by 

known protein-protein interaction databases ((124) that may neglect known and unknown 

functional interactions among proteins.  
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Multivariate and Machine Learning Methods 

As an alternative to univariate models, imaging genomics has begun to adopt “big data” 

techniques to facilitate data-driven discovery including the simultaneous modelling of genetic 

and imaging data to identify components with shared variance (29,125-127)). For example, 

parallel independent component analysis (p-ICA(29), uses genomewide and whole-brain imaging 

data to yield clusters of functionally related SNPs that are correlated with phenotypic 

components. Though traditionally performed agnostically at the whole-genome whole-brain 

level, modified hybrid approaches allow for the incorporation of prior information while also 

providing data-driven estimation (128). The multivariate fusion of imaging and genetics data 

allows for the identification of statistically linked genomic and neural components, which may 

provide insight into common mechanisms. Additionally, machine learning methods are 

beginning to be used in imaging genetics and genomics to predict or classify disease outcomes, 

which is perhaps the most direct clinical application of such methods for psychiatry. The use of 

these techniques in imaging genetics and genomics have typically relied upon well characterized 

candidate genes (e.g., (129), though data-driven analyses are also emerging (130). While in its 

infancy, considering clinical, neural, and genetic features in tandem for disease prediction is a 

promising future avenue of exploration that may have important clinical ramifications. 

 Despite their many benefits, multivariate techniques face a variety of unique limitations. 

Indeed, their use within psychiatric genetics has been controversial (131,132). For example, the 

high dimensionality of data frequently violates assumptions by including more features (i.e., 

input variables) than observations (i.e., participants). As such, dimensionality reduction is 

typically required. Correspondingly, the vast number of inputs, multiple tests performed, and 
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increased number of parameters being estimated risks overfitting the models and necessitates a 

heightened reliance on replication to confirm associations. However, the use of proper out-of-

sample cross-validation approaches (e.g., leave-N-out), common in the machine learning 

literature outside of imaging genetics, can maximize the generalizability of a given study and, as 

such, should be universally adopted within the field. 

 

Imaging Genetics and Genomics Going Forward: Conclusions 

As imaging genetics and genomics prepares to enter its third decade, the field has exponentially 

expanded from its modest candidate gene investigation of ligand binding to include large scale 

single studies with more than 1,000 participants (perhaps unfathomable to neuroimaging 

researchers even 10 years ago), longitudinal designs, extensive data sharing, cross-modal 

investigation, and translation with non-human animal and psychiatric genetics research (21-26). 

Moreover, the field has begun to adopt novel methodology (e.g., the transcriptome) and analytic 

approaches (e.g., PRS, pathway analyses). This growth will undoubtedly enhance its ability to 

generate new etiologic knowledge that may ultimately enhance psychiatric nosology, treatment, 

and ideally, prevention. However, the same standards of skepticism, interest in replication, and 

insistence on biological validation apply as have arisen in candidate gene, one-locus at a time, 

imaging genetics. Arguably, as imaging genetics and genomics data increase in dimensionality 

and testing (e.g., data sharing), these concerns are only heightened.  
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Replication: Let’s Do It When We Can but Accept When We Can’t 

As proposed by Carter and colleagues (133), and is applicable to research across fields (134), 

replication and appropriate correction for multiple testing is critical for confidence in research 

findings. While direct replication is the sine que non, it is rarely done within an imaging genetics 

study (e.g.,(16), and we are hesitant to recommend it as a blanket criterion for publication, even 

when studies are small (133). Often methodological innovations are accompanied by substantive 

cost and going forward we could envision small samples that could yield formative insight into 

the genetic architecture of neural phenotypes that could not feasibly be replicated (e.g., 

recruitment based upon a rare variant; PET studies)(135). Ideally, we would replicate every 

association before it is published. However, we also must work within practical funding 

constraints. When replication can be tested, it undoubtedly should and null results should not be 

discouraged by journals (133). However, when replication cannot be attempted, perhaps it is best 

to take it for what it is – it might be an exceptionally innovative study that provides formative 

insight or a false positive, that unfortunately, may bias future research(135). The publication of 

null results and addressing citation biases within the literature (136), would help combat the 

development of such biases. When replication cannot be reasonably obtained, a compromise is 

using within-sample cross validation, which is feasible for small studies and would make 

inferences more generalizable. Further, it will be important to critically evaluate the properties of 

imaging phenotypes that may influence replication such as reliability and the factors that may 

influence this (e.g., time of day) to distill imaging phenotypes into trait-and state-related facets 

that enhance their research utility. Lastly, in addition to replication, we believe that evidence of 

consilience should also be considered when evaluating findings, particularly in the context of 

increasing collaboration between imaging genetics, molecular genetics, non-human-animal 
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models, as well as psychiatric and behavioral genetics ((84); Table 1). Evaluating convergence 

across methods is particularly useful when meta-analytic approaches may not yet be able to 

adequately model widespread between study variability. Indeed, it is precisely in the context of 

such convergence, that single variant candidate polymorphism investigations remain informative.  

 

In Search of Mechanistic Understanding 

Much like psychiatric and behavioral genetics, a major constraint on the utility of imaging 

genetics and genomics is its ability to inform molecular mechanisms which is predicated on the 

functional characterization of polymorphisms. With few exceptions (e.g., FKBP5(51)), 

polymorphisms have yet to be functionally detailed in a convincing manner. Pairing imaging 

genetics with molecular genetic and basic neuroscience research tools, holds tremendous 

potential. For example, in one of the most significant advances in psychiatric genetics, Sekar and 

colleagues (83) conducted a series of studies distilling the effects of the schizophrenia associated 

major histocompatibility (MHC) locus to complex variation within complement component 4 

and showed that these alleles altered C4A and C4B expression in the brain, that was proportional 

to schizophrenia risk. Further, because C4 mediated synaptic pruning during postnatal 

development in mice, it is plausible that this may account for reduced synapses in schizophrenia. 

Indeed, it is precisely in this context that focused analyses remain relevant in our polygenic 

world.  

In addition to better understanding molecular mechanisms using emergent technologies 

(e.g., RNA and methylation microarrays, RNA-Seq, bisulfite sequencing, ChIPSeq, mass 

spectroscopy), available databases of gene expression (BRAINEAC (137), braincloud (138), 
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GTEx (139)) and bioinformatics tools (e.g., WUSTL epigenome browser (140)) may prove 

fruitful, particularly when interrogating novel and uncharacterized polymorphisms. Additionally, 

recent developments that allow for the imputation of the genetically-related transcriptome using 

GWAS data, such as TWAS (141) and PrediXcan (142), may aid in identification and 

confirmation of phenotype-related genes. It is also important to highlight that while integrative 

approaches will undoubtedly lead to greater etiologic insight, unique challenges need to be 

actively confronted. For example, because methylation is dynamic (143), with evidence that even 

proximal experiences (e.g., meal consumption), shape its landscape and measurement (144), it 

will be important for imaging genetics studies to collect DNA samples temporally linked to 

imaging data.  

 

Summary 

In conjunction with in vitro, in vivo, non-human animal research, pharmacologic manipulation, 

and psychiatric and behavioral genetics, imaging genetics and genomics can provide unique 

mechanistic insight into the genetic and experiential differences that contribute to psychiatric 

risk. We suggest that elements of the endophenotypic research conceptualization (e.g., disease-

association) impede progress within imaging genetics and psychiatry and that some conclusions 

arising from meta-analyses may be premature in light of phenotypic harmonization concerns. 

Further, we highlight the potential of relatively novel approaches in imaging genetics (e.g., PRS, 

pathway, multivariate) as well as challenges and limitations that each face while suggesting that 

single variant candidate gene analyses remain relevant, particularly in large samples alongside 

convergent evidence and anticipated small effects. Lastly, as knowledge and data continue to 

grow and are accompanied by methodological advances, data sharing, and prospective data 
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collection, it becomes increasingly important to extend the traditional unidirectional model of 

imaging genetics (Figure 1A) to explore the complex, and testable, interplay between the 

genome, brain, body, and experience (Figure 1B). Presently, the most prudent manner to begin 

testing these pathways is through multimodal data convergence – imaging genetics is but one 

crucial component in the elaborate and multifaceted puzzle surrounding the interface between 

brain and behavior - integrating across various lines of evidence is likely to provide the most 

complete picture. 
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Figure 1. Imaging Genetics and Genomics Models 

Figure 1. (A) The traditional imaging genetics and genomics model suggests that genetic 

variation confers risk for psychopathology indirectly through its influence on the brain. This 

theoretical model is well suited for traditional mediation models estimating indirect associations 

(demarcated with the dashed line), through which genetic background is linked to behavior 

through neural phenotypes. (B) Imaging genetics and imaging genomics redux: In the future, as 

imaging genetics and genomics expand to include larger and longitudinal samples it will be 

possible to evaluate a more complete interactive model in which bidirectional relationships 

between the genome, brain, and behavior may be investigated in the context of environmental 

experience and peripheral biological markers. For example, socioeconomic status has been 

associated with epigenetic modifications that are, in turn, related to psychiatrically-relevant brain 

function (145). Moreover, environmental experience (e.g., trauma experienced during early life) 

moderates genetic associations with neural phenotypes and associations between neural 

phenotypes and behavior (20,146). Further, genetic background influences peripheral indices 

such as gut microbiome (147), which in turn has been linked to neural phenotypes and 

psychopathology (148). As a result, a more complete mechanistic understanding requires 

multiple levels of analyses in the context of longitudinal and convergent data.  Currently, 

convergence across multiple methods and studies testing legs separately is attainable. Informed 

by such studies, in the future, as large multimodal longitudinal studies develop, it is plausible 

that more complete pathways could be tested in the framework of a single study. 
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Table 1. Converging Evidence: The Example of Fatty Acid Amie Hydrolase (FAAH) 

rs324420 genotype (C/A; C385A) 

Source of Evidence  Findings  Benefits  Limitations 

In Vitro Function  A allele homozygosity is 

associated with less 

FAAH cellular 

expression in T-

lymphocytes and 

transfected cells due to 

post-translation 

mechanism preceding 

folding (149). 

 Controlled functional 

characterization and 

isolation of step at which 

allelic variation impacts 

function 

 Unclear if similar 

function is observed 

in vivo amongst an 

interactive system 

In Vivo Function  A allele carriers had 

lower  [(11)C]CURB 

PET binding (FAAH 

binding) (150). 

 

 In vivo functional 

characterization 

 Often small samples, 

unclear links to 

behavior and other 

relevant phenotypes 

(e.g., brain function, 

structure) 

Non-human Animal 

Manipulation 
 Knock-in mouse model: 

A allele associated with 

forebrain FAAH protein 

expression, hydrolytic 

activity, and elevated 

anandamide. A allele 

associated with increased 

projections from 

infralimbic to basolateral 

amygdala and enhanced 

fear extinction, and 

reduced anxiety (13). 

 Controlled manipulation of 

system using a variety of 

means (e.g., 

pharmacologic, genetic) 

 Unclear whether 

translates to humans 

and related 

conditions. 

Questionable 

phenotypic 

convergence across 

species for some 

phenotypes. 

Human Manipulation 

(Pharmacologic 

Challenge) 

 Human: THC 

administration associated 

with reduced anxiety and 

threat-related amygdala 

reactivity (151). 

 

 

 Manipulation of a specific 

system allowing causal 

inferences to be drawn. For 

some substances, 

limitations on who can be 

exposed for human studies. 

 Temporary and 

chronic manipulation 

unclear translation to 

genetic risk. 

Uncertain whether 

artificial 

manipulations create 

other systematic 

changes.  

Imaging Genetics and 

Genomics 
 A allele associated with 

decreased threat-related 

amygdala reactivity and 

increased amygdala 

habituation (152). 

 Provides a tractable and 

clinically-relevant 

phenotype. Offers system-

level insight. 

 Molecular 

mechanisms of 

association unclear 

Psychiatric/Behavioral 

Association (Candidate 

or GWAS) 

 A allele associated with 

enhancd fear extinction, 

reduced anxiety and 

stress sensitivity (10).  

 Provides clinical relevance  Unclear biological 

mechanisms 

Treatment  Some evidence that 

FAAH inhibition 

improves anxiety in 

rodent models (153). 

Most common self-

reported reason for using 

cannabis is anxiety 

 Evaluation of applicable 

therapeutic potential 
 Dependent upon 

other evidence, 

ability and safety to 

manipulate target. 

Lack of regional 

specificity in humans 



Bogdan 33 
 

reductions. THC 

administration reduces 

anxiety in clinical 

populations (154). 

 

The endocannabinoid system has been linked to stress recovery, anxiety, and substance use, across a host of models. 

Fatty Acid Amide Hydrolase (FAAH) in an enzymatic regulator of endocannabinoid signaling. Within the 

endocannabinoid system, it primarily degrades the endocannabinoid ligand anandamide.  
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The Origins of Imaging Genetics 

Guided by convergent evidence from in vitro, psychiatric, and behavioral candidate gene studies 

(e.g., Table 1), imaging genetics began in 1998 before the draft of the human genome was 

complete. Characterizing the replication challenge that is inherent to the field, the first two 

imaging genetics studies (1, 2) reached opposing conclusions on whether the missense ankyrin 

repeat and kinase domain containing 1 (ANKK1) C/T single nucleotide polymorphism (SNP), 

rs1800497 (also known as Taq1A, previously assigned to DRD21), is associated with in vivo 

dopamine receptor type 2 (D2R) availability and density. Pohjalainen and colleagues (1) found 

that the T allele of rs1800497 is associated with reduced dopamine type 2/3 receptor availability 

in the striatum among 54 healthy volunteers. Contrastingly, Laruelle and colleagues (2) found no 

difference in binding according to rs1800497 genotype in a sample of healthy controls (n=47) 

and patients with schizophrenia (n=23); however, a consistent unreported trending association is 

observed in controls. A meta-analysis of in vivo and postmortem studies supports the association 

between the T allele and reduced D2R availability among healthy individuals (3). The 

mechanism underlying these functional associations remains controversial; it is plausible that 

they may emerge as a result of interactions between ANKK1 and DRD2 or linkage disequilibrium 

patterns with nearby SNPs within DRD2, or otherwise unknown interactions. Nonetheless, 

                                                            
1 Notably, this SNP was initially mistakenly believed to be within the dopamine receptor type gene 
(DRD2) but actually resides downstream of DRD2 within ANKK1, which codes for a protein kinase 
involved in signal transduction. 
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evidence suggests that this SNP may be associated with psychiatric phenotypes (4, 5) potentially 

as a result of these functional associations; (but see also (6)) and lack of GWAS significance (7).  

These initial imaging genetic findings were followed in 1998 and 2000 by ligand binding 

studies by Heinz and colleagues in humans and rhesus monkeys that associated SPECT imaging 

of [I-123]β-CIT binding to polymorphisms within the serotonin transporter (SLC6A4) and 

dopamine transporter (SLC6A3) genes (8-11). Alongside in vitro studies, these initial imaging 

genetics studies have been highly influential, inspiring a wealth of research examining 

associations between these genotypes and individual differences in structural and functional 

neural phenotypes as well as psychiatric disorders and variability in behavior (e.g., (12)). Thus, 

from its ligand-based beginnings, imaging genetics has produced findings that converge with 

data from multiple other modalities providing potential mechanistic pathways through which 

genetic variation in some of the most well-studied candidate loci may impact psychiatrically 

relevant behavior and risk. For further historical review please see (13). 

Imaging genetics did not become widespread until it employed functional magnetic 

resonance imaging (fMRI) to examine associations between functional polymorphisms in the 

apolipoprotein E (APOE), catechol-O-methyltransferase (COMT) and serotonin transporter 

(SLC6A4) and neural activation during memory and emotion tasks (14, 15). These studies paved 

the way for the broader adoption of imaging genetics in the context of functional and structural 

MRI due to its lower cost, wide availability and lack of ionizing radiation exposure. Further, the 

larger sample sizes that can be obtained using MRI have led to the development of massive 

datasets through data sharing and large scale studies (16-21). In addition to encouraging new 

ways of characterizing brain function and structure such as examining interactions within and 

between large scale brain networks, these large datasets allow for the application of analytic 
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techniques such as GWAS (22), gene x gene interaction (23), gene x environment interaction 

(24), and pathway analysis (25) that may link both genes and behavioral phenotypes to brain 

function in new and interesting ways. This extension to MRI has enabled the rapid expansion of 

the field and helped popularize the intermediate phenotype approach in psychiatry by helping 

contextualize gene – behavior relationships through the mediating effects of brain (Figure 1A) 

(26), which has subsequently been refined in the form of the research domain criteria (RDoC) for 

psychiatric disease (27). 

 

Gene x Environment Interaction 

Given large effects of the environment, and in particular childhood maltreatment and poverty, on 

the expression of psychopathology, a complete etiologic understanding requires the 

incorporation of environmental factors (28). The interplay between genotype and environmental 

factors (including adversity and advantage) may occur due to selective environmental exposure 

due to genotype (i.e., gene-environment correlation) or due to their interaction (i.e., gene x 

environment interaction, GxE). Inspired by GxE observations in traditional psychiatric genetics 

that have been profoundly influential (29) but have also grown increasingly contentious (30), 

imaging genetics has begun to interrogate GxE using single variant and polygenic approaches. 

For example, studies have linked a functional variant in FKBP5 that has been associated with 

stress-related psychopathology and disease, to threat-related amygdala responsiveness in the 

context of prior childhood maltreatment (31, 32). That this association occurs in the context of 

adversity occurring early in life is consistent with observations in clinical and molecular 

epigenetic research (33). In another recent example, within 3 independent samples, polygenic 

risk for schizophrenia was negatively associated with cortical thickness only among male 
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participants who used cannabis (34). While these findings are intuitively appealing and provide 

ample mechanistic speculation for psychopathology risk, it is important to highlight that GxE 

research within an imaging genetics framework is confronted by a host of unique challenges 

including assessment of the environment in resource intensive studies, the need to appropriately 

model covariates, as well as power limitations introduced by interactive terms; a more complete 

discussion of these unique challenges is presented in (24). 
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